Bayesian Nonparametric Modelling with the Dirichlet Process Regression Smoother

نویسنده

  • J. E. Griffin
چکیده

In this paper we discuss implementing Bayesian fully nonparametric regression by defining a process prior on distributions which depend on covariates. We consider the problem of centring our process over a class of regression models and propose fully nonparametric regression models with flexible location structures. We also introduce a non-trivial extension of a dependent finite mixture model proposed by Chung and Dunson (2007) to a dependent infinite mixture model and propose a specific prior, the Dirichlet Process Regression Smoother, which allows us to control the smoothness of the process. Computational methods are developed for the models described. Results are presented for simulated and actual data examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

Dirichlet Process

The Dirichlet process is a prior used in nonparametric Bayesian models of data, particularly in Dirichlet process mixture models (also known as infinite mixture models). It is a distribution over distributions, i.e. each draw from a Dirichlet process is itself a distribution. It is called a Dirichlet process because it has Dirichlet distributed finite dimensional marginal distributions, just as...

متن کامل

Model-based approaches to nonparametric Bayesian quantile regression

In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by mean regression. We develop two distinct Bayesian approaches to fully nonparametric model-based quantile regression. The first appro...

متن کامل

Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes

This paper considers modelling spatially varying regression effects for multivariate mortality count outcomes. Alternative approaches to spatial regression heterogeneity are considered: the multivariate normal conditional autoregressive (MCAR) model is contrasted with a flexible set of priors based on the multiple membership approach. These include spatial factor priors and a nonparametric appr...

متن کامل

Nonparametric Bayesian Data Analysis

We review the current state of nonparametric Bayesian inference. The discussion follows a list of important statistical inference problems, including density estimation, regression, survival analysis, hierarchical models and model validation. For each inference problem we review relevant nonparametric Bayesian models and approaches including Dirichlet process (DP) models and variations, Polya t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007